Exemplar-SVMs for Visual Ob ject Detection, Label Transfer and Image Retrieval

نویسندگان

  • Tomasz Malisiewicz
  • Abhinav Shrivastava
  • Abhinav Gupta
  • Alexei A. Efros
چکیده

Today’s state-of-the-art visual object detection systems are based on three key components: 1) sophisticated features (to encode various visual invariances), 2) a powerful classifier (to build a discriminative object class model), and 3) lots of data (to use in largescale hard-negative mining). While conventional wisdom tends to attribute the success of such methods to the ability of the classifier to generalize across the positive class instances, here we report on empirical findings suggesting that this might not necessarily be the case. We have experimented with a very simple idea: to learn a separate classifier for each positive object instance in the dataset (see Figure 1). In this setup, no generalization across the positive instances is possible by definition, and yet, surprisingly, we did not observe any drastic drop in performance compared to the standard, category-based approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Part level transfer regularization for enhancing exemplar SVMs

Exemplar SVMs (E-SVMs, Malisiewicz et al., ICCV 2011), where an SVM is trained with only a single positive sample, have found applications in the areas of object detection and content-based image retrieval (CBIR), amongst others. In this paper we introduce a method of part based transfer regularization that boosts the performance of E-SVMs, with a negligible additional cost. This enhanced E-SVM...

متن کامل

Enhancing Exemplar SVMs using Part Level Transfer Regularization

Content based image retrieval (CBIR), the problem of searching digital images in large databases according to their visual content, is a well established research area in computer vision. In this work we are particularly interested in retrieving subwindows of images which are similar to the given query image, i.e. the goal is detection rather than image level classification. The notion of simil...

متن کامل

Exemplar-based Representations for Object Detection, Association and Beyond

Recognizing and reasoning about the objects found in an image is one of the key problems in computer vision. This thesis is based on the idea that in order to understand a novel object, it is often not enough to recognize the object category it belongs to (i.e., answering “What is this?”). We argue that a more meaningful interpretation can be obtained by linking the input object with a similar ...

متن کامل

Steganography Scheme Based on Reed-Muller Code with Improving Payload and Ability to Retrieval of Destroyed Data for Digital Images

In this paper, a new steganography scheme with high embedding payload and good visual quality is presented. Before embedding process, secret information is encoded as block using Reed-Muller error correction code. After data encoding and embedding into the low-order bits of host image, modulus function is used to increase visual quality of stego image. Since the proposed method is able to embed...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012